Isomorphismes entre des espaces de mesures \`a valeurs vectorielles

29 Mar 2016  ·  Daher Mohammad ·

Let $(\Omega_1, \mathcal{F}_1, \mu_1)$, $(\Omega_2, \mathcal{F}_2, \mu_2)$ be two probabilty spaces, $1\leq p\leq +\infty$ and $X$ a Banach space. In this work we show that $L^p(\mu_1, X)$, $VB^p (\mu_1,X),$ $cabv(\mu_{1},X)$ are isomorphic to $L^p(\mu_2, X),$ $VB^p(\mu_2, X)$, $cabc(\mu_2, X)$ respectively, if $L^1(\mu_1)$ is strongly isomorphic to $L^1(\mu_2)$...

PDF Abstract
No code implementations yet. Submit your code now


Functional Analysis