Global well-posedness for nonlinear wave equations with supercritical source and damping terms

30 Oct 2018  ·  Guo Yanqiu ·

We prove the global well-posedness of weak solutions for nonlinear wave equations with supercritical source and damping terms on a three-dimensional torus $\mathbb T^3$ of the prototype \begin{align*} &u_{tt}-\Delta u+|u_t|^{m-1}u_t=|u|^{p-1}u, \;\; (x,t) \in \mathbb T^3 \times \mathbb R^+ ; \notag\\ &u(0)=u_0 \in H^1(\mathbb T^3)\cap L^{m+1}(\mathbb T^3), \;\; u_t(0)=u_1\in L^2(\mathbb T^3), \end{align*} where $1\leq p\leq \min\{ \frac{2}{3} m + \frac{5}{3} , m \}$. Notably, $p$ is allowed to be larger than $6$...

PDF Abstract
No code implementations yet. Submit your code now

Categories


Analysis of PDEs