Gamma-convergence of a shearlet-based Ginzburg--Landau energy

27 Nov 2019  ·  Petersen Philipp Christian, Süli Endre ·

We introduce two shearlet-based Ginzburg--Landau energies, based on the continuous and the discrete shearlet transform. The energies result from replacing the elastic energy term of a classical Ginzburg--Landau energy by the weighted $L^2$-norm of a shearlet transform... The asymptotic behaviour of sequences of these energies is analysed within the framework of $\Gamma$-convergence and the limit energy is identified. We show that the limit energy of a characteristic function is an anisotropic surface integral over the interfaces of that function. We demonstrate that the anisotropy of the limit energy can be controlled by weighting the underlying shearlet transforms according to their directional parameter. read more

PDF Abstract
No code implementations yet. Submit your code now


Functional Analysis Analysis of PDEs