Finiteness of Nichols Algebras and Nichols (Braided) Lie Algebras

17 Mar 2019  ·  Wu Weicai, Zhang Shouchuan, Zhang Yao-Zhong ·

It is shown that if $\mathfrak B(V) $ is connected Nichols algebra of diagonal type with $\dim V>1$, then $\dim (\mathfrak L^-(V)) = \infty$ $($resp. $ \dim (\mathfrak L(V)) = \infty $$)$ $($ resp... $ \dim (\mathfrak B(V)) = \infty $$)$ if and only if $\Delta(\mathfrak B(V)) $ is an arithmetic root system and the quantum numbers (i.e. the fixed parameters) of generalized Dynkin diagrams of $V$ are of finite order. Sufficient and necessary conditions for $m$-fold adjoint action in $\mathfrak B(V)$ equal to zero, viz. $\overline{l}_{x_{i}}^{m}[x_{j}]^ -=0$ for $x_i,~x_j\in \mathfrak B(V)$, are given. read more

PDF Abstract
No code implementations yet. Submit your code now


Quantum Algebra