Extension functors of generalized local cohomology modules

24 Oct 2018  ·  Vahidi Alireza, Hassani Faisal, Hoseinzade Elham ·

Let $R$ be a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ an ideal of $R$, $M$ a finitely generated $R$--module, and $X$ an arbitrary $R$--module. In this paper, for non-negative integers $s, t$ and a finitely generated $R$--module $N$, we study the membership of $\operatorname{Ext}_{R}^{s}(N, \operatorname{H}^{t}_{\mathfrak{a}}(M, X))$ in Serre subcategories of the category of $R$--modules and present some upper bounds for the injective dimension and the Bass numbers of $\operatorname{H}^{t}_{\mathfrak{a}}(M, X)$. We also give some results on cofiniteness and minimaxness of $\operatorname{H}^{t}_{\mathfrak{a}}(M, X)$ and finiteness of $\operatorname{Ass}_R(\operatorname{H}^{t}_{\mathfrak{a}}(M, X)$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Commutative Algebra