Differential geometry of rectifying submanifolds

28 Jul 2016  ·  Chen Bang-Yen ·

A space curve in a Euclidean 3-space $\mathbb E^3$ is called a rectifying curve if its position vector field always lies in its rectifying plane. This notion of rectifying curves was introduced by the author in [Amer... Math. Monthly {\bf 110} (2003), no. 2, 147-152]. In this present article, we introduce and study the notion of rectifying submanifolds in Euclidean spaces. In particular, we prove that a Euclidean submanifold is rectifying if and only if the tangential component of its position vector field is a concurrent vector field. Moreover, rectifying submanifolds with arbitrary codimension are completely determined. read more

PDF Abstract
No code implementations yet. Submit your code now


Differential Geometry