Given a tournament $T$, a module of $T$ is a subset $X$ of $V(T)$ such that for $x, y\in X$ and $v\in V(T)\setminus X$, $(x,v)\in A(T)$ if and only if $(y,v)\in A(T)$. The trivial modules of $T$ are $\emptyset$, $\{u\}$ $(u\in V(T))$ and $V(T)$... (read more)

PDF- COMBINATORICS