DAHA approach to iterated torus links

14 Jan 2017  ·  Cherednik Ivan, Danilenko Ivan ·

We extend the construction of the DAHA-Jones polynomials for any reduced root systems and DAHA-superpolynomials in type A from the iterated torus knots (our previous paper) to links, including arbitrary algebraic links. Such a passage essentially corresponds to the usage of the products of Macdonald polynomials and is directly connected to the so-called splice diagrams... The specialization t=q of our superpolynomials conjecturally results in the HOMFLY-PT polynomials. The relation of our construction to the stable Khovanov-Rozansky polynomials and the so-called ORS-polynomials of the corresponding plane curve singularities is expected for algebraic links in the uncolored case. These 2 connections are less certain, since the Khovanov-Rozansky theory for links is not sufficiently developed and the ORS polynomials are quite involved. However we provide some confirmations. For Hopf links, our construction produces the DAHA-vertex, similar to the refined topological vertex, which is an important part of our paper. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Algebra Geometric Topology Representation Theory