Control Barrier Functions for Stochastic Systems

16 Oct 2020  ·  Clark Andrew ·

Control Barrier Functions (CBFs) aim to ensure safety by constraining the control input at each time step so that the system state remains within a desired safe region. This paper presents a framework for CBFs in stochastic systems in the presence of Gaussian process and measurement noise. We first consider the case where the system state is known at each time step, and present reciprocal and zero CBF constructions that guarantee safety with probability 1. We extend our results to high relative degree systems with linear dynamics and affine safety constraints. We then develop CBFs for incomplete state information environments, in which the state must be estimated using sensors that are corrupted by Gaussian noise. We prove that our proposed CBF ensures safety with probability 1 when the state estimate is within a given bound of the true state, which can be achieved using an Extended Kalman Filter when the system is linear or the process and measurement noise are sufficiently small. We propose control policies that combine these CBFs with Control Lyapunov Functions in order to jointly ensure safety and stochastic stability. Our results are validated via numerical study on a multi-agent collision avoidance example.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optimization and Control