Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space

30 Apr 2015  ·  Donninger Roland, Krieger Joachim, Szeftel Jeremie, Wong Willie ·

We study time-like hypersurfaces with vanishing mean curvature in the (3+1) dimensional Minkowski space, which are the hyperbolic counterparts to minimal embeddings of Riemannian manifolds. The catenoid is a stationary solution of the associated Cauchy problem... This solution is linearly unstable, and we show that this instability is the only obstruction to the global nonlinear stability of the catenoid. More precisely, we prove in a certain symmetry class the existence, in the neighborhood of the catenoid initial data, of a co-dimension 1 Lipschitz manifold transverse to the unstable mode consisting of initial data whose solutions exist globally in time and converge asymptotically to the catenoid. read more

PDF Abstract
No code implementations yet. Submit your code now


Analysis of PDEs Mathematical Physics Differential Geometry Mathematical Physics