Codimension-$1$ Simplices in Divisible Convex Domains

29 Jan 2020  ·  Bobb Martin D. ·

Properly embedded simplices in a convex divisible domain $\Omega \subset \mathbb{R} \textrm{P}^d$ behave somewhat like flats in Riemannian manifolds, so we call them flats. We show that the set of codimension-$1$ flats has image which is a finite collection of disjoint virtual $(d-1)$-tori in the compact quotient manifold... If this collection of virtual tori is non-empty, then the components of its complement are cusped convex projective manifolds with type $d$ cusps. read more

PDF Abstract
No code implementations yet. Submit your code now


Geometric Topology