Let $\mathcal{L}$ be a Schr\"odinger operator of the form $\mathcal{L} = -\Delta+V$ acting on $L^2(\mathbb R^n)$ where the nonnegative potential $V$ belongs to the reverse H\"older class $B_q$ for some $q\geq n.$ Let $L^{p,\lambda}(\mathbb{R}^{n})$, $0\le \lambda<n$ denote the Morrey space on $\mathbb{R}^{n}$. In this paper, we will show that a function $f\in L^{2,\lambda}(\mathbb{R}^{n})$ is the trace of the solution of ${\mathbb L}u=u_{t}+{\mathcal{L}}u=0, u(x,0)= f(x),$ where $u$ satisfies a Carleson-type condition \begin{eqnarray*} \sup_{x_B, r_B} r_B^{-\lambda}\int_0^{r_B^2}\int_{B(x_B, r_B)} |\nabla u(x,t)|^2 {dx dt} \leq C <\infty... \end{eqnarray*} Conversely, this Carleson-type condition characterizes all the ${\mathbb L}$-carolic functions whose traces belong to the Morrey space $L^{2,\lambda}(\mathbb{R}^{n})$ for all $0\le \lambda<n$. This result extends the analogous characterization founded by Fabes and Neri for the classical BMO space of John and Nirenberg. read more

PDF Abstract
Analysis of PDEs
Classical Analysis and ODEs