Asymptotic profile and Morse index of nodal radial solutions to the H\'enon problem

25 Oct 2018 Amadori Anna Lisa Gladiali Francesca

We compute the Morse index of nodal radial solutions to the H\'enon problem \[\left\{\begin{array}{ll} -\Delta u = |x|^{\alpha}|u|^{p-1} u \qquad & \text{ in } B, \newline u= 0 & \text{ on } \partial B, \end{array} \right. \] where $B$ stands for the unit ball in ${\mathbb R}^N$ in dimension $N\ge 3$, $\alpha>0$ and $p$ is near at the threshold exponent for existence of solutions $p_{\alpha}=\frac{N+2+2\alpha}{N-2}$, obtaining that \begin{align*} m(u_p) & = m \sum\limits_{j=0}^{1+\left[{\alpha}/{2}\right]} N_j \quad & \mbox{ if $\alpha$ is not an even integer, or} \newline m(u_p)& = m\sum\limits_{j=0}^{ \alpha /2} N_j + (m-1) N_{1+\alpha/ 2} & \mbox{ if $\alpha$ is an even number.}.. (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • ANALYSIS OF PDES