An asynchronous leapfrog method II

25 Apr 2016  ·  Mutze Ulrich ·

A second order explicit one-step numerical method for the initial value problem of the general ordinary differential equation is proposed. It is obtained by natural modifications of the well-known leapfrog method, which is a second order, two-step, explicit method... According to the latter method, the input data for an integration step are two system states, which refer to different times. The usage of two states instead of a single one can be seen as the reason for the robustness of the method. Since the time step size thus is part of the step input data, it is complicated to change this size during the computation of a discrete trajectory. This is a serious drawback when one needs to implement automatic time step control. The proposed modification transforms one of the two input states into a velocity and thus gets rid of the time step dependency in the step input data. For these new step input data, the leapfrog method gives a unique prescription how to evolve them stepwise. The stability properties of this modified method are the same as for the original one: the set of absolute stability is the interval [-i,+i] on the imaginary axis. This implies exponential growth of trajectories in situations where the exact trajectory has an asymptote. By considering new evolution steps that are composed of two consecutive old evolution steps we can average over the velocities of the sub-steps and get an integrator with a much larger set of absolute stability, which is immune to the asymptote problem. The method is exemplified with the equation of motion of a one-dimensional non-linear oscillator describing the radial motion in the Kepler problem. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Numerical Analysis