Algebraic tensor products and internal homs of noncommutative L^p-spaces

21 Dec 2019  ·  Pavlov Dmitri ·

We prove that the multiplication map L^a(M)\otimes_M L^b(M)\to L^{a+b}(M) is an isometric isomorphism of (quasi)Banach M-M-bimodules. Here L^a(M)=L_{1/a}(M) is the noncommutative L_p-space of an arbitrary von Neumann algebra M and \otimes_M denotes the algebraic tensor product over M equipped with the (quasi)projective tensor norm, but without any kind of completion... Similarly, the left multiplication map L^a(M)\to Hom_M(L^b(M),L^{a+b}(M)) is an isometric isomorphism of (quasi)Banach M-M-bimodules, where Hom_M denotes the algebraic internal hom. In particular, we establish an automatic continuity result for such maps. Applications of these results include establishing explicit algebraic equivalences between the categories of L_p(M)-modules of Junge and Sherman for all p\ge0, as well as identifying subspaces of the space of bilinear forms on L^p-spaces. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Operator Algebras Functional Analysis