A Proof Of The Block Model Threshold Conjecture

25 Aug 2015  ·  Mossel Elchanan, Neeman Joe, Sly Allan ·

We study a random graph model named the "block model" in statistics and the "planted partition model" in theoretical computer science. In its simplest form, this is a random graph with two equal-sized clusters, with a between-class edge probability of $q$ and a within-class edge probability of $p$... A striking conjecture of Decelle, Krzkala, Moore and Zdeborov\'a based on deep, non-rigorous ideas from statistical physics, gave a precise prediction for the algorithmic threshold of clustering in the sparse planted partition model. In particular, if $p = a/n$ and $q = b/n$, $s=(a-b)/2$ and $p=(a+b)/2$ then Decelle et al.\ conjectured that it is possible to efficiently cluster in a way correlated with the true partition if $s^2 > p$ and impossible if $s^2 < p$. By comparison, the best-known rigorous result is that of Coja-Oghlan, who showed that clustering is possible if $s^2 > C p \ln p$ for some sufficiently large $C$. In a previous work, we proved that indeed it is information theoretically impossible to to cluster if $s^2 < p$ and furthermore it is information theoretically impossible to even estimate the model parameters from the graph when $s^2 < p$. Here we complete the proof of the conjecture by providing an efficient algorithm for clustering in a way that is correlated with the true partition when $s^2 > p$. A different independent proof of the same result was recently obtained by Laurent Massoulie. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Probability Social and Information Networks