A polynomial upper bound for the mixing time of edge rotations on planar maps

13 Jan 2020  ·  Caraceni Alessandra ·

We consider a natural local dynamic on the set of all rooted planar maps with $n$ edges that is in some sense analogous to "edge flip" Markov chains, which have been considered before on a variety of combinatorial structures (triangulations of the $n$-gon and quadrangulations of the sphere, among others). We provide the first polynomial upper bound for the mixing time of this "edge rotation" chain on planar maps: we show that the spectral gap of the edge rotation chain is bounded below by an appropriate constant times $n^{-11/2}$. In doing so, we provide a partially new proof of the fact that the same bound applies to the spectral gap of edge flips on quadrangulations, which makes it possible to generalise a recent result of the author and Stauffer to a chain that relates to edge rotations via Tutte's bijection.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Probability Combinatorics