Let $X$, $Y$ and $Z$ be Banach spaces and let $U$ be a subspace of $\mathcal{L}(X^*,Y)$, the Banach space of all operators from $X^*$ to $Y$. An operator $S: U \to Z$ is said to be $(\ell^s_p,\ell_p)$-summing (where $1\leq p <\infty$) if there is a constant $K\geq 0$ such that $$ \Big( \sum_{i=1}^n \|S(T_i)\|_Z^p \Big)^{1/p} \le K \sup_{x^* \in B_{X^*}} \Big(\sum_{i=1}^n \|T_i(x^*)\|_Y^p\Big)^{1/p} $$ for every $n\in \mathbb{N}$ and every $T_1,\dots,T_n \in U$... (read more)

PDF- FUNCTIONAL ANALYSIS